Skip to content

通过统一的优化形式,实现了暴力的FVM流体-可变形体的强流固耦合。

ElastoMonolith: A Monolithic Optimization-based Liquid Solver for Contact-Aware Elastic-Solid Coupling

Elasto Monolith Overview

使用基于优化的时间积分器,来实现流固动力学计算及其耦合。

  1. 流体动力学:使用APIC,网格上全隐式的求解
  2. 变形体动力学:Position-level Optimization
  3. 刚体动力学:Velocity-level Friction contact handling(ref: Siggraph 2022 course)
Algorithm EM:
1. map fluid velocity (P->G)
2. add Explicit External Force
3. solve the system
4. advect particles and update rigid body positions.

该最小化问题集成了:

  1. 粘性、无粘性液体 + Incompressibility
  2. 刚体、弹性体 + Friction

消除了可见的错误:

  1. 体积流失
  2. 穿透
  3. 流固耦合上的能量损失
\[ \mathbf{u}, \mathbf{x}_e \mathbf{v}_r = \arg\min_{d\in \mathcal{D}, h \in \mathcal{H}} E(u, x, r) \]

其中,\(E\)由三部分组成:

\[ E = E_{f} + E_{e} + E_{r} \]

分别是流体项、弹性体项、刚体项

相当的朴实无华...

Rigid body Simulation

Contact handling of rigid bodies => Energy Minimization.

Object for rigid bodies can be written as the kinematic energy-norm of difference between before and after.

\[ E_r(v_r) = \frac{1}{2} \| v_r - v_{r}^{*} \|_{\alpha M_r} \]

其中:\(v_r^*\)\(v_r\) 是 before 和 after 的刚体速度,\(M_r\) 为质量矩阵

\[ v_r = v_{r}^{*} + \Delta t (\alpha M_r)^{-1} (F_{r s} s + F_{r p} p + \alpha J_r^Tc) \]